Lorentz boost

Also called hyperbolic rotations. They are a subgroup of Lorentz group, important in Special Relativity.

Lorentz boosts in 1+1 dimensions are a fundamental concept when considering how measurements of time and space change for observers moving relative to one another. In a 1+1 dimensional space, we only consider one spatial dimension (x) and one time dimension (t).

The Lorentz boost formula in 1+1 dimensions describes how the coordinates (time and space) of an event transform from one inertial frame to another moving at a constant velocity v relative to the first. The transformation is given by:

t=γ(tvc2x)x=γ(xvt)

Where:

This transformation ensures that the speed of light is the same in all inertial frames, a cornerstone of special relativity. It also leads to effects such as time dilation and length contraction.

________________________________________

________________________________________

________________________________________

Author of the notes: Antonio J. Pan-Collantes

antonio.pan@uca.es


INDEX: